
2.5 Exercise

The residential building of the sketch includes a basement of area $12 \times 18 m^2$ and height 3 m, a ground floor and four storeys of identical dimensions and a top floor of area $4 \times 6 m^2$ and height 2.5 m. The masses at levels 0, 1, 2, 3, 4 are equal to $M_G=220 t$ and $M_Q=44 t$, at level 5 to $M_G=180 t$ and $M_Q=44 t$, while at the top level to $M_G=20 t$ and $M_Q=4 t$. The building is situated in the seismic area Z₁ and the distribution of seismic accelerations is triangular. The design seismic acceleration-of magnitude 0.12g is applied at the center of mass of the building.

The calculation of the seismic and wind forces as well as a comparison between them is asked.

 M_i [t]: masses, w [kN/m²]: wind loads, a_i [m/sec²]: seismic accelerations

Since the building is residential $\psi_2=0.30$ and consequently during an earthquake the dynamic masses are evaluated as $M=M_{\rm G}+0.30\cdot M_{\rm Q}$. Thus, the dynamic masses at levels 0, 1, 2, 3 and 4 are equal to $M_{\rm G+0.30Q,i=0.4}=220+0.30\times44=233 t$, at level 5 is equal to $M_{\rm G+0.30Q,i=0.4}=220+0.30\times44=233 t$, at level 5 is equal to $M_{\rm G+0.30Q,i=0.4}=180+0.30\times44=193 t$, while at the top level is equal $M_{\rm G+0.30Q,i=2}=20+0.30\times4=21 t$.

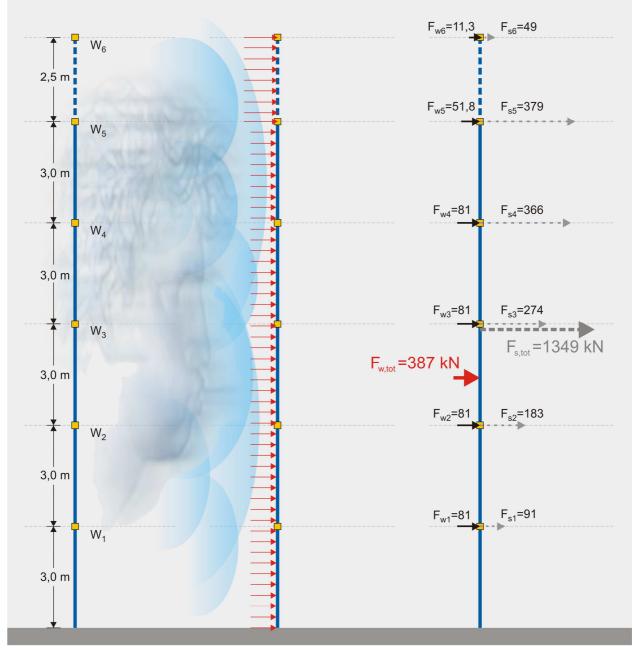


Figure 2.5-2: Wind forces F_w are less significant comparing to earthquake forces F_s . W [kN]: gravity loads $F_w [kN]$: wind forces $F_s [kN]$: seismic forces

Assessment of seismic forces

The total mass of the building during earthquake is $M=4\times233+193+21=1146 t$, while the CM (mass center) is located at distance z_0 from the ground floor basis:

$$z_0 = \frac{233 \times 3.0 + 233 \times 6.0 + 233 \times 9.0 + 233 \times 12.0 + 193 \times 15.0 + 21 \times 18.0}{1146} = \frac{10263tm}{1146t} = 9.0 \text{ m}$$