### 5.4.3 Centre of stiffness and elastic displacements of the diaphragm

The current paragraph examines the special case of orthogonal columns in parallel arrangement. The general case is examined in Appendix C.

### 5.4.3.1 Subject description



Figure 5.4.3.1-1: Simple one-storey structure comprising four columns, whose tops are connected by a rigid slab-diaphragm.


Figure 5.4.3.1-2: Parallel translation of the diaphragm in both directions and rotation, due to a force $\boldsymbol{H}$ applied to the centre of mass $\boldsymbol{C}_{M}$ (XOY initial coordinate system, $\mathrm{X} \mathrm{C}_{\text {T }}$ main coordinate system)

When a horizontal force $\boldsymbol{H}$ acts on a storey level, all the points of the slab including the column ${ }^{9}$ tops move in accordance with the same rules due to the in-plane rigidity of the slab.
These rules induce the diaphragm to develop a parallel (translational) displacement by $\boldsymbol{\delta}_{x o}, \boldsymbol{\delta}_{y o}$ and a rotation $\boldsymbol{\theta}_{z}$ about the centre of stiffness $\mathrm{C}_{\mathrm{T}}\left(\boldsymbol{x}_{C T}, \boldsymbol{y}_{\boldsymbol{C}}\right)$ in $\mathrm{xC}_{\mathrm{T}} \mathrm{y}$ coordinate system, which is parallel ${ }^{10}$ to the initial coordinate system XOY and has as origin the point $\mathrm{C}_{\mathrm{T}}$.
The diaphragmatic behaviour may be considered as a superposition of three cases:
(a) parallel translation of the diaphragm along the $X$ direction due to horizontal force component $H_{X}$,
(b) parallel translation of the diaphragm along the $Y$ direction due to horizontal force component $H_{Y}$,
(c) rotation of the diaphragm due to moment $M_{C T}$ applied at the centre of stiffness $C_{T}$.

The horizontal seismic forces are applied at each mass point, while the resultant force is applied at the centre of mass $C_{M}$.
In case the direction of the force $H$ passes through the point $C_{T}$ as well as $C_{M}$ the moment has zero value and therefore the diaphragm develops zero rotation.

### 5.4.3.2 Translation of centre of stiffness $C_{T}$ along $x$ direction



Figure 5.4.3.2: Parallel translation along the $x$ direction due to force $H_{x}$ applied at $C_{T}$

[^0]In case a horizontal force $H_{x}$ is applied at $C_{T}$ in x direction, the following 2 equilibrium equations apply:

- The sum of forces in $x$ direction is equal to $H_{x}$, i.e. $H_{x}=\Sigma\left(V_{x o i}\right)$ (i).
- The sum of moments $V_{x o i}$ about the point $\mathrm{C}_{\mathrm{T}}$ is equal to zero, i.e. $\Sigma\left(V_{x o i} \cdot y_{i}\right)=0$ (ii).

Each column i carries a shear force $V_{x o i}=\delta_{x o} \cdot K_{x i}$.
$\Sigma\left(V_{x o i}\right)=\Sigma\left(\delta_{x o} \cdot K_{x i}\right)=\delta_{x o} \cdot \Sigma\left(K_{x i}\right)$, expression (i) gives $H_{x}=\delta_{x o} \cdot \Sigma\left(K_{x i}\right) \rightarrow$
$H_{x}=K_{x} \cdot \delta_{x o}$ where $K_{x}=\Sigma\left(K_{x i}\right)$.
Expression (ii) gives $\Sigma\left(V_{x o i} \cdot\left[Y_{i}-Y_{C T}\right]\right)=0 \rightarrow \Sigma\left(V_{x o i} \cdot Y_{i}\right)-\Sigma\left(V_{x o i} \cdot Y_{C T}\right)=0 \rightarrow Y_{C T} \Sigma\left(V_{x o i}\right)=\Sigma\left(V_{x o i} \cdot Y_{C T}\right) \rightarrow$ $Y_{C T}=\Sigma\left(\delta_{x 0} \cdot K_{x i} \cdot Y_{i}\right) / \Sigma\left(\delta_{x 0} \cdot K_{x i}\right) \rightarrow Y_{C T}=\Sigma\left(K_{x i} \cdot Y_{i}\right) / \Sigma\left(K_{x i}\right)$

### 5.4.3.3 Translation of centre of stiffness $C_{T}$ along $y$ direction



Figure 5.4.3.3: Parallel translation in y direction due to force $H_{y}$ applied at $C_{T}$
Accordingly, the corresponding expressions are derived for direction y .
$H_{y}=K_{y} \cdot \delta_{y o}$ where $K_{y}=\Sigma\left(K_{y i}\right)$ and $X_{C T}=\Sigma\left(K_{y i} \cdot X_{i}\right) / \Sigma\left(K_{y j}\right)$
Summarising, the centre of stiffness and the lateral stiffnesses are defined by the following expressions:

Centre of stiffness and lateral stiffnesses:
$X_{C T}=\frac{\sum\left(X_{i} \cdot K_{y i}\right)}{\sum\left(K_{y i}\right)}, H_{x}=K_{x} \cdot \delta_{x o}$ where $K_{x}=\sum\left(K_{x i}\right)$
$Y_{C T}=\frac{\sum\left(Y_{i} \cdot K_{x i}\right)}{\sum\left(K_{x i}\right)}, H_{y}=K_{y} \cdot \delta_{y o}$ where $K_{y}=\sum\left(K_{y i}\right)$

### 5.4.3.4 Rotation of the diaphragm by an angle $\boldsymbol{\theta}_{\boldsymbol{z}}$ about $\boldsymbol{C}_{T}$




$$
\begin{aligned}
& \delta_{i}=r_{i} \cdot \theta_{z} \\
& \delta_{x i}=-\delta_{i} \sin \omega_{i} \\
& \sin \omega_{i}=y_{i} / r_{i} \\
& \delta_{x i}=-r_{i} \theta_{z} \cdot y_{i} / r_{i}=-y_{i} \cdot \theta_{z} \\
& \delta_{y i}=x_{i} \cdot \theta_{z}
\end{aligned}
$$

Figure 5.4.3.4: Displacements due to rotation developed from moment $M$ applied at $C_{T}$
To determine the deformation developed by external moment M , applied at the centre of stiffness $\mathrm{C}_{\mathrm{T}}$, the initial system XOY is transferred (by parallel translation) to the principal system $\mathrm{xC}_{\mathrm{T}}$. The centre of mass is transferred to the principal system along the structural eccentricities ${ }^{11} e_{o x}, e_{o y}$ in accordance with the following expressions:

## Principal coordinate system

$x_{i}=X_{i}-X_{C T}, y_{i}=Y_{i}-Y_{C T}, e_{o x}=x_{C M}, e_{o y}=y_{C M}$
The displacement of the diaphragm consists essentially of a rotation $\theta_{z}$ about the $\mathrm{C}_{\mathrm{T}}$, inducing a displacement $\delta_{i}$ at each column top $i$ with coordinates $x_{i} y_{i}$ in respect to the coordinate system with origin the $\mathrm{C}_{\mathrm{T}}$. If the distance between the point $i$ and the $\mathrm{C}_{\mathrm{T}}$ is $r_{i}$, the two components of the (infinitesimal) deformation $\delta_{i}$ are equal to $\delta_{x i}=-\theta_{z} \cdot y_{i}$ and $\delta_{y i}=\theta_{z} \cdot x_{i}$.
The shear forces $V_{x i}$ and $V_{y i}$ in each column developed from the displacements $\delta_{x i} \delta_{y i}$ are:
$V_{x i}=K_{x i} \cdot \delta_{x i}=K_{x i} \cdot\left(-\theta_{z} \cdot y_{i}\right) \rightarrow V_{x i}=-\theta_{z} \cdot K_{x i} \cdot y_{i}$ and $V_{y i}=K_{y i} \cdot \delta_{y i}=K_{y i} \cdot\left(\theta_{z} \cdot x_{i}\right) \rightarrow V_{y i}=\theta_{z} \cdot k_{y i} \cdot x_{i}$
The resultant moment of all shear forces $V_{x i}, V_{y i}$ about the centre of stiffness is equal to the external moment $M_{C T}$, i.e.
$M_{C T}=\Sigma\left(-V_{x i} \cdot y_{i}+V_{y i} \cdot x_{i}+K_{z i}\right) \rightarrow M_{C T}=\theta_{z} \cdot \Sigma\left(K_{x i} \cdot y_{i}^{2}+K_{y i} \cdot x_{i}^{2}+K_{z i}\right)$

## Torsional stiffness $\mathrm{K}_{2 i}$ of column i

Columns resist the rotation of the diaphragm by their flexural stiffness expressed in terms $K_{x i} \cdot y_{i}^{2}$, $K_{y i} \cdot x_{i}^{2}($ in $N \cdot m)$, and their torsional stiffness $K_{z i}$, which is measured in units of moment e.g. $N \cdot m$.

[^1]
### 5.4.4 Assessment of building torsional behaviour

The degree of the torsional stiffness of a diaphragmatic floor is determined by the relation between the equivalent mass inertial ring ( $\mathrm{C}_{\mathrm{M}}, \mathrm{I}_{\mathrm{s}}$ ) and the torsional stiffness ellipse ( $\mathrm{C}_{\mathrm{T}}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}$ ). The optimal location of the two curves is where the torsional stiffness ellipse encloses the mass inertial ring.


Figure 5.4.4: Equivalent mass inertial ring ( $C_{M}, I_{s}$ ) and torsional stiffness ellipse ( $C_{T}, r_{x}, r_{y}$ )
A building is classified as torsionally flexible [EC8 §5.2.2.1] if either $r_{x}<l_{s}$ or $r_{y}<l_{s}$ is satisfied in at least one diaphragm storey level. In this example both conditions are satisfied.

For a building to be categorized as being regular in plan, the two structural eccentricities $e_{o x}, e_{o y}$ at each level shall satisfy both conditions $e_{o x} \leq 0.30 r_{x} \& e_{o y} \leq 0.30 r_{y}$ [ $E C 8$ §4.2.3.2]. In this particular example the first condition is satisfied $e_{o x}=0.94 m \leq 0.30 r_{x}(=0.30 \times 3.91=1.173 \mathrm{~m})$, whereas the second one is not $e_{o x}=1.34 \mathrm{~m} \leq 0.30 r_{x}(=0.30 \times 3.08=0.924 \mathrm{~m})$. Therefore the building that comprises that specific floor diaphragm is not regular in plan.
Simplified seismic analysis may be performed, provided that the following conditions are met for each $x$, $y$ direction:
$r_{x}^{2}>I_{s}^{2}+e_{0 x}^{2}$
$r_{y}^{2}>I_{s}^{2}+e_{0 y}{ }^{2}$ [EC8 \&4.3.3.1(8) d)].
In this example the first condition is satisfied
$3.91^{2}(=15.3)>2.81^{2}+0.94^{2}(=7.9+0.9=8.8)$,
whereas the second one is not
$3.08^{2}(=9.5)<2.81^{2}+1.34^{2}(=7.9+1.8=9.7)$.
We therefore conclude that the simplified seismic analysis may not be performed at the building including this particular floor diaphragm.

# Calculation ${ }^{22}$ of the diaphragmatic behaviour $1^{\text {st }}$ (and unique) floor level 



Figure 5.4.5.4-2
$1^{\text {st }}$ Loading:
$H_{X}=90.6 \mathrm{kN}$
eccentricity ${ }^{23} c_{Y}=1.0 \mathrm{~m}$
$M_{C M, X}=90.6 \mathrm{kNm}$


Figure 5.4.5.4-5
The displacements of each point $i$
$\delta_{X, i}, \delta_{Y, i}$
and the rotation angle of the
diaphragm
$\theta_{X Z}=9.681 \times 10^{-5}$


Figure 5.4.5.4-3
$2^{\text {nd }}$ Loading:

$$
H_{X}=90.6 \mathrm{kN}
$$

Diaphragm restrained against rotation


Figure 5.4.5.4-6
The diaphragm develops zero rotation and moves parallelly ${ }^{24}$ to the axes $X, Y$.
Each point of the diaphragm (therefore the $C_{T}$ as well) has the same principal displacements

$$
\delta_{X X o}=0.684 \mathrm{~mm}, \delta_{X Y o}=0
$$



Figure 5.4.5.4-4
(1 ${ }^{\text {st }}$ Loading) minus ( $2^{\text {nd }}$ Loading):

$$
H_{X}=0
$$

$$
M_{C T, X}=90.6 \cdot y_{C M}+90.6 \cdot \mathrm{c}_{\mathrm{Y}}
$$



Figure 5.4.5.4-7
The diaphragm develops only a rotation $\theta_{X Z}$ about $C_{T}$.
The displacements of each point $i$ due to rotation are equal to:

$$
\delta_{X t, i}=\delta_{X, i}-\delta_{X X o}, \delta_{Y t, i}=\delta_{Y, i}-\delta_{X Y o}
$$

The $C_{T}$ derives from the expressions:

$$
X_{C T}^{25}=X_{I}-\delta_{Y t, l} / \theta_{X Z}=3.646 \mathrm{~m}
$$

$$
Y_{C T}=Y_{1}+\delta_{X t, I} / \theta_{X Z}=3.316 \mathrm{~m}
$$

[^2]
## Calculation of the diaphragmatic behaviour (continued) $1^{\text {st }}$ (and only) floor level



Figure 5.4.5.4-8

$$
\begin{gathered}
3^{r d} \text { Loading: } \\
H_{Y}=90.6 \mathrm{kN}
\end{gathered}
$$

Diaphragm restrained against rotaion


Figure 5.4.5.4-9
Analysis results:
The diaphragm is not rotated, but only translated in parallel to the axes $X, Y$.
Each point of the diaphragm (therefore and the $C_{T}$ ) has the same principal displacement:

$$
\delta_{Y X o}=0, \delta_{Y Y o}=0.824 \mathrm{~mm} .
$$

The $3{ }^{\text {rd }}$ analysis completes the necessary series of analyses for the determination of all diaphragm data.


Figure 5.4.5.4-10

Definition of the principal system ${ }^{26}$, of the torsional stiffness radii and of the equivalent system (see §C.6):

$$
\begin{gathered}
\tan (2 a)=2 \delta_{X Y d} d\left(\delta_{X X o}-\delta_{Y Y o}\right)=0.0 \rightarrow 2 a=0^{\circ} \rightarrow a=0^{\circ} \\
\delta_{x x o}=\delta_{X X o}=0.684 \mathrm{~mm}, \\
\delta_{y y o}=\delta_{Y Y o}=0.824 \mathrm{~mm} \\
K_{x x}=H_{y} / \delta_{x x o}=90.6 \times 10^{3} \mathrm{~m} / 0.684 \times 10^{-3} \mathrm{~m}=132.5 \times 10^{6} \mathrm{~N} / \mathrm{m} \\
K_{y y}=H_{y} / \delta_{y y o}=90.6 \times 10^{3} \mathrm{~m} / 0.824 \times 10^{-3} \mathrm{~m}=110.0 \times 10^{6} \mathrm{~N} / \mathrm{m}
\end{gathered}
$$

$$
M_{C T, X}=90.6 \cdot y_{C M}+90.6 \cdot c_{Y}=90.6 \times(3.316-2.500)+90.6 \times 1.0=164.5 \mathrm{kNm}
$$

$$
K_{\theta}=M_{C T, ~, ~ X ~} / \theta_{X Z}=164.5 / 9.681 \times 10^{-5}=17.0 \times 10^{5} \mathrm{kNm}
$$

$$
r_{x}=\sqrt{ } K_{\theta} / K_{y y}=\sqrt{ } 17.0 \times 10^{8} \mathrm{~N} / \mathrm{m} / 110.0 \times 10^{6} \mathrm{~N} / \mathrm{m}=3.931 \mathrm{~m}
$$

$$
r_{y}=\sqrt{ } K_{\theta} / K_{x x}=\sqrt{ } 17.0 \times 10^{8} \mathrm{~N} / \mathrm{m} / 132.5 \times 10^{6} \mathrm{~N} / \mathrm{m}=3.582 \mathrm{~m}
$$

[^3]
[^0]:    9 Henceforth the term 'column' accounts for terms column and wall.
    10 In the general case, i.e. in the case of columns with inclined local principal axes with respect to the initial system XOY , the inclination angle of the principal system with respect to the initial system is $a \neq 0^{\circ}$ (see Appendix C ). Therefore, when the system of orthogonal columns is parallelly arranged then $\mathrm{K}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}}, \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{x}}, \mathrm{K}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}}=0$, meaning that a horizontal force applied at the centre of stiffness in x direction results in a displacement only along $x$ (the same applies for $y$ direction).

[^1]:    11 The eccentricities $e_{0 x}$, eoy are called structural because they depend only on the geometry of the structure and not on the external loading. As presented in chapter 6, besides structural eccentricities, accidental eccentricities also exist.

[^2]:    22 The analysis of the diaphragmatic floor is performed automatically by the software. Algorithms are verified using the tools provided by the software. In this example with zero angle a of the principal system, all the diaphragm data may be calculated by two simple analyses and by the equations of the special case $a=0$, already presented in the previous paragraphs. Here, the general case of columns arranged randomly is been used, which applies even in the special case of the rectangular columns in parallel arrangement. The method is explained in detail in Appendix D.
    ${ }_{23}$ The horizontal seismic load is applied at the $\mathrm{C}_{\mathrm{m}}$. The eccentricity of the loading can be given also as equivalent torsional moment $\mathrm{M}_{\mathrm{cm}, \mathrm{x}}=\mathrm{H} \times \mathrm{Cr}_{\mathrm{y}}$, which in this case is equal to $\mathrm{Mcm}_{\mathrm{c}, \mathrm{x}}=90.6 \times 1.0=90.6 \mathrm{kNm}$. This additional eccentricity aims to increase the effect of the rotation, i.e. to give larger displacements due to rotation, in order to calculate the torsion related data of the diaphragm more accurately.
    24 In the special case of an one-storey building comprising only rectangular columns arranged parallelly to the axes $\mathrm{X}, \mathrm{Y}$, the horizontal force acting in X or Y displaces the diaphragm only in X or Y .
    25 The equations determining the $C_{T}$ coordinates are general and may be applied for each point. Indicatively, for column 4:

[^3]:    $X_{C T}=X_{4}-\delta_{\mathrm{Y}, 4} / \theta_{\mathrm{xz}}=6.0-0.228 \times 10^{-3} \mathrm{~m} /\left(9.681 \times 10^{-5}\right)=6.0-2,355=3.645 \mathrm{~m}$
    $Y_{C T}=Y_{4}+\delta_{X t} 4 / \theta_{x z}=5.0-0.163 \times 10^{-3} \mathrm{~m} /\left(9.681 \times 10^{-5}\right)=5.0-1.684=3.316 \mathrm{~m}$.
    ${ }^{26}$ In this example, it is already determined that the angle of the principal system is zero, if the type of the structure is considered and the $2^{\text {nd }}$ analysis (according to which $\delta_{x y_{0}}=0$ ). The calculation has been performed for the sake of generality. To this end, other quantities have also been calculated, such as the centre of stiffness, which in this case is obtained from the simple application of moment at the point $\mathrm{Cm}_{\mathrm{m}}$.

