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5.4.3 Centre of stiffness and elastic displacements of the diaphragm  

The current paragraph examines the special case of orthogonal columns in parallel arrange-
ment. The general case is examined in Appendix C. 

5.4.3.1 Subject description 

 
Figure 5.4.3.1-1: Simple one-storey structure comprising four columns, 

whose tops are connected by a rigid slab-diaphragm. 

 
Figure 5.4.3.1-2: Parallel translation of the diaphragm in both directions and rotation ,  

due to a force Η applied to the centre of mass CM 

(Χ0Υ initial coordinate system, xCTy main coordinate system) 
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When a horizontal force H acts on a storey level, all the points of the slab including the column9 
tops move in accordance with the same rules due to the in-plane rigidity of the slab. 

These rules induce the diaphragm to develop a parallel (translational) displacement by δxo, δyo 
and a rotation θz about the centre of stiffness CT(xCT, yCT) in xCTy coordinate system, which is 
parallel 10 to the initial coordinate system X0Y and has as origin the point CT. 

The diaphragmatic behaviour may be considered as a superposition of three cases: 

(a) parallel translation of the diaphragm  along the X direction due to horizontal force component 
HX, 

(b) parallel translation of the diaphragm  along the Y direction due to horizontal force component 
HY, 

(c) rotation of the diaphragm due to moment MCT applied at the centre of stiffness CT. 

The horizontal seismic forces are applied at each mass point, while the resultant force is applied 
at the centre of mass CM.  

In case the direction of the force H passes through the point CT as well as CM the moment has 
zero value and therefore the diaphragm develops zero rotation. 

 

5.4.3.2 Translation of centre of stiffness CT along x direction 

 
Figure 5.4.3.2: Parallel translation along the x direction due to force Hx applied at CT 

 

 

 
                                                
9  Henceforth the term ‘column’ accounts for terms column and wall. 

10  In the general case, i.e. in the case of columns with inclined local principal axes with respect to the initial system X0Y, the inclination angle 
of the principal system with respect to the initial system is a≠0˚ (see Appendix C). Therefore, when the system of orthogonal columns is 
parallelly arranged then KX=Kx, VX=Vx, KXY=Kxy=0, meaning that a horizontal force applied at the centre of stiffness in x direction results in 
a displacement only along x (the same applies for y direction). 
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In case a horizontal force Hx is applied at CT in x direction, the following 2 equilibrium equations 
apply: 

• The sum of forces in x direction is equal to Hx, i.e. Hx=Σ(Vxoi) (i). 

• The sum of moments Vxoi about the point CT is equal to zero, i.e. Σ(Vxoi⋅yi)=0 (ii). 

Each column i carries a shear force Vxoi=δxo⋅Kxi. 

Σ(Vxoi)=Σ(δxo⋅Kxi)=δxo⋅Σ(Kxi),  expression (i) gives Hx=δxo⋅Σ(Kxi) �  

Hx=Kx⋅δxo where Kx=Σ(Kxi). 

Expression (ii) gives Σ(Vxoi⋅[Yi-YCT])=0 � Σ(Vxoi⋅Yi )-Σ(Vxoi⋅YCT)=0 � YCT⋅Σ(Vxoi)= Σ(Vxoi⋅YCT) � 

YCT=Σ(δxo⋅Kxi⋅Yi)/Σ(δxo⋅Kxi) � YCT=Σ(Kxi⋅Yi)/Σ(Kxi) 

 

5.4.3.3 Translation of centre of stiffness CT along y direction 

 

         Figure 5.4.3.3: Parallel translation in y direction due to force Hy applied at CT 

Accordingly, the corresponding expressions are derived for direction y. 

Hy=Ky⋅δyo where Ky=Σ(Kyi) and XCT=Σ(Kyi⋅Xi)/Σ(Kyi) 

Summarising, the centre of stiffness and the lateral stiffnesses are defined by the following ex-
pressions: 

Centre of stiffness and lateral stiffnesses: 
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5.4.3.4 Rotation of the diaphragm by an angle θz about CT 

 
Figure 5.4.3.4: Displacements due to rotation developed from moment M applied at CT 

To determine the deformation developed by external moment M, applied at the centre of stiff-
ness CT, the initial system X0Y is transferred (by parallel translation) to the principal system 
xCTy. The centre of mass is transferred to the principal system along the structural eccentrici-
ties11 eox, eoy in accordance with the following expressions: 

Principal coordinate system  

CTii XXx −= , CTii YYy −= , CMox xe = , CMoy ye =       (6’) 

The displacement of the diaphragm consists essentially of a rotation θz about the CT, inducing a 
displacement δi at each column top i with coordinates xi,yi in respect to the coordinate system 
with origin the CT. If the distance between the point i and the CT is r i, the two components of the 
(infinitesimal) deformation δi are equal to δxi=-θz·yi and δyi=θz·xi. 

The shear forces Vxi and Vyi in each column developed from the displacements δxi, δyi are: 

Vxi=Kxi⋅δxi=Kxi⋅(-θz⋅yi) � Vxi=-θz⋅Kxi⋅yi and Vyi=Kyi⋅δyi=Kyi⋅(θz⋅xi) � Vyi=θz⋅kyi⋅xi 

The resultant moment of all shear forces Vxi, Vyi about the centre of stiffness is equal to the ex-
ternal moment MCT, i.e. 

MCT=Σ(-Vxi⋅yi+Vyi⋅xi+Kzi) � MCT= θz⋅Σ(Kxi⋅yi
2+Kyi⋅xi

2+Kzi) 

Torsional stiffness Kzi of column i 

Columns resist the rotation of the diaphragm by their flexural stiffness expressed in terms Kxi⋅yi
2 , 

Kyi⋅xi
2 (in N⋅m), and their torsional stiffness Kzi, which is measured in units of moment e.g. N⋅m. 

 

                                                
11  The eccentricities eox, eoy are called structural because they depend only on the geometry of the structure and not on the external loading. 

As presented in chapter 6, besides structural eccentricities, accidental eccentricities also exist. 
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5.4.4 Assessment of building torsional behaviour 

The degree of the torsional stiffness of a diaphragmatic floor is determined by the relation be-
tween the equivalent mass inertial ring (CM, ls) and the torsional stiffness ellipse (CT, rx, ry). The 
optimal location of the two curves is where the torsional stiffness ellipse encloses the mass iner-
tial ring. 
 

 
Figure 5.4.4: Equivalent mass inertial ring (CM, ls) and torsional stiffness ellipse (CT, rx, ry) 

 
A building is classified as torsionally flexible [EC8 §5.2.2.1] if either rx<l s or ry<l s is satisfied in at 
least one diaphragm storey level. In this example both conditions are satisfied. 
 
For a building to be categorized as being regular in plan, the two structural eccentricities eox, eoy 

at each level  shall satisfy both conditions eox≤0.30rx & eoy≤0.30ry  [EC8 §4.2.3.2]. In this particular 
example the first condition is satisfied eox=0.94 m ≤ 0.30rx (=0.30×3.91=1.173 m), whereas the 
second one is not eox=1.34 m ≤ 0.30rx (=0.30×3.08=0.924 m). Therefore the building that compris-
es that specific floor diaphragm is not regular in plan. 

Simplified seismic analysis may be performed, provided that the following conditions are met for 
each x, y direction: 
 
rx

2 > ls
2 + eox

2 

ry
2 > ls

2 + eoy
2 [EC8 §4.3.3.1(8) d)]. 

In this example the first condition is satisfied 

3.912(=15.3)>2.812+0.942(=7.9+0.9=8.8), 

whereas the second one is not 

3.082(=9.5)<2.812+1.342(=7.9+1.8=9.7). 

We therefore conclude that the simplified seismic analysis may not be performed at the building 
including this particular floor diaphragm.  
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Calculation22 of the diaphragmatic behaviour  

1st (and unique) floor level 

 
Figure 5.4.5.4-2 

 
Figure 5.4.5.4-3 

 
Figure 5.4.5.4-4 

1st Loading: 

HX=90.6 kN  
eccentricity 23 cY=1.0 m 

MCM,X=90.6 kNm 

2nd Loading: 

HX=90.6 kN 
     Diaphragm restrained  
              against rotation  

(1st Loading) minus (2nd Loading): 

HX=0 

MCT,X=90.6⋅yCM+90.6⋅cY 

 
Figure 5.4.5.4-5 

 
Figure 5.4.5.4-6 

 
Figure 5.4.5.4-7 

The displacements of each point i 
δX,i , δY,i 

and the rotation angle of the  
diaphragm 

θXZ=9.681×10-5 

The diaphragm develops zero 
rotation and moves parallelly24 to 

the axes X, Y.   
Each point of the diaphragm 

(therefore the CT as well ) has the 
same principal displacements 

 δXXo=0.684 mm, δXYo=0. 

The diaphragm develops only a 
rotation θXZ about CT.  

The displacements of each point  
i due to rotation are equal to: 
δXt,i=δX,i-δXXo, δYt,i=δY,i-δXYo . 

The CT derives from the  
expressions: 

XCT
25=X1-δYt,1/θXZ=3.646 m 

YCT  =Y1+δXt,1/θXZ=3.316 m 

                                                
22  The analysis of the diaphragmatic floor is performed automatically by the software. Algorithms are verified using the tools provided by the 

software. In this example with zero angle a of the principal system, all the diaphragm data may be calculated by two simple analyses and 
by the equations of the special case a=0, already presented in the previous paragraphs. Here, the general case of columns arranged ran-
domly is been used, which applies even in the special case of the rectangular columns in parallel arrangement. The method is explained in 
detail in Appendix D. 

23  The horizontal seismic load is applied at the CM. The eccentricity of the loading can be given also as equivalent torsional moment 
MCM,X=HX⋅cY, which in this case is equal to MCM,X=90.6×1.0=90.6 kNm. This additional eccentricity aims to increase the effect of the rota-
tion, i.e. to give larger displacements due to rotation, in order to calculate the torsion related data of the diaphragm more accurately. 

24  In the special case of an one-storey building comprising only rectangular columns arranged parallelly to the axes X,Y, the horizontal force 
acting in X or Υ displaces the diaphragm only in X or Υ. 

25  The equations determining the CT coordinates are general and may be applied for each point. 
Indicatively, for column 4: 
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Calculation of the diaphragmatic behaviour (continued) 
1st (and only) floor level 

Figure 5.4.5.4-8 

 

 
Figure 5.4.5.4-10 

3rd Loading: 

HY=90.6 kN 
Diaphragm restrained against 

rotaion  

Figure 5.4.5.4-9 

Analysis results: 

The diaphragm is not rotated, 
but only translated in parallel to 

the axes X, Y.  

Each point of the diaphragm 
(therefore and the CT) has the 
same principal displacement:  

δYXo=0, δYYo=0.824 mm. 

The 3 rd analysis completes the 
necessary series of analyses for 

the determination of all dia-
phragm data. 

Definition of the principal system26, of the torsional stiffness radii 
and of the equivalent system (see §C.6): 

tan(2a)=2δXYo/(δXXo-δYYo)=0.0 � 2a=0° � a=0° 

δxxo=δXXo=0.684 mm, 

δyyo=δYYo=0.824 mm 

Kxx=Hx/δxxo=90.6×103m/0.684×10-3m=132.5×106 N/m 

Kyy=Hy/δyyo=90.6×103m/0.824×10-3m=110.0×106 N/m 

MCT,X=90.6⋅yCM+90.6⋅cY=90.6×(3.316-2.500)+90.6×1.0=164.5 kNm 

Kθ=MCT,X/θXZ=164.5/9.681×10-5=17.0×105kNm 

rx=√Kθ/Kyy=√17.0×108N/m/110.0×106N/m=3.931m 

ry=√Kθ/Kxx=√17.0×108N/m/132.5×106N/m=3.582 m 

 

                                                                                                                                                       

XCT=X4-δYt,4 /θXZ=6.0-0.228×10-3m/(9.681×10-5)=6.0-2,355=3.645 m 
YCT=Y4+δXt,4/θXZ=5.0-0.163×10-3m/(9.681×10-5)=5.0-1.684=3.316 m. 

26  In this example, it is already determined that the angle of the principal system is zero, if  the type of the structure is considered and the 2nd 
analysis (according to which δXYo=0). The calculation has been performed for the sake of generality. To this end, other quantities have also 
been calculated, such as the centre of stiffness, which in this case is obtained from the simple application of moment at the point CM. 


